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Abstract. We theoretically discuss two-photon double-slit interference for spontaneous and stimulated
parametric down-conversions and compare it with one-photon case. We show that two-photon sub-
wavelength interference can exist in a general interaction of spontaneous parametric down-conversion
(SPDC) for both type I and type II crystals. In low gain SPDC, interference effect can be attributed to the
previous study based on two-photon entangled state. But the important fact is that the sub-wavelength
interference will not be washed out even if in very high gain SPDC, revealing the macroscopic nature. We
propose an alternative scheme to observe sub-wavelength interference with a joint-intensity measurement,
which occurs for a type I crystal in the high gain case. The theoretical analysis shows that the effect
originates from classical thermal correlation. However, we also formulate the one-photon and two-photon
double-slit interference in the stimulated process, and show amplified interference patterns.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 42.65.Lm Parametric down conversion and production of en-
tangled photons – 42.25.Hz Interference – 42.82.Cr Fabrication techniques; lithography, pattern transfer

1 Introduction

Young’s double-slit interference experiment is one of the
powerful ways to exhibit the nature of optical field, includ-
ing both classical and nonclassical coherence effects. In re-
cent years, an interesting subject is devoted to the study
of two-photon double-slit interference in the process of
spontaneous parametric down-conversion (SPDC) [1–15].
Since in this process a pair of converted beams generated
by a pump beam are entangled, the two-photon double-
slit interference may show some peculiar phenomena such
as sub-wavelength interference (or quantum lithography)
and ghost interference. For the former, both signal and
idler beams are set together to pass through a double-
slit [5,6,8–11,13,14] and for the latter, the double-slit is
placed on a path of only one beam [1–4,7,12,15]. The orig-
inal idea of the sub-wavelength interference comes from
the reduction of de Broglie wavelength for combining two
massive particles. It was extended to optical interference
for a biphoton or multi-photon state in a beam splitter and
a Mach-Zehnder interferometer [16–20]. Due to the fact
that this effect can surpass the Rayleigh diffraction limit,
it may have prospective application in photo-lithography
technology.

a e-mail: wangkg@bnu.edu.cn

In most of theoretical analyses, the sub-wavelength in-
terference is explained by a two-photon entangled state
which can be acquired in low gain SPDC. Nevertheless,
the low intensity is the obstacle in practical application.
Therefore, the exploration of these effects in macroscopic
regime makes sense [15,18,19]. References [18,19] showed
that in high gain SPDC the sub-wavelength interference
can occur in a Mach-Zehnder interferometer. This effect
implies that two-photon entanglement can persist macro-
scopically. However, recent studies [21,22] proposed that
it is possible to perform coherent imaging by using the
classical correlation of two beams obtained by splitting
incoherent thermal radiation. Gatti et al. [21,22] indi-
cated there is a formal analogy between two classically
correlated beams and two entangled beams produced by
parametric down-conversion. Because of this analogy, the
classical beams can mimic qualitatively all the imaging
properties of the entangled beams. In addition, they also
pointed out that the sub-wavelength double-slit interfer-
ence could in principle be observed in the scheme that uses
the classically correlated thermal beams, provided that the
pixels in the detection planes of the two beams are scanned
symmetrically [21]. In parallel, reference [23] theoretically
demonstrated that a thermal light source which is random
in the transverse direction can produce a sub-wavelength
double-slit interference in a joint intensity measurement.
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In this paper, we study one-photon and two-photon
double-slit interference in both spontaneous and stimu-
lated parametric down-conversions. We focus on the case
in which a double-slit is placed on the paths of both sig-
nal and idler beams. We find that sub-wavelength lithog-
raphy can occur in very high gain SPDC with substantial
visibility. The discussion covers both type I and type II
crystals which exhibit different behavior in two-photon
interference. For a type I crystal, we demonstrate that
the sub-wavelength double-slit interference can occur in
two kinds of observation, with both a two-photon inten-
sity measurement and a joint-intensity measurement in
which two one-photon detectors are placed at symmet-
ric positions with respect to the double-slit. The former
originates from quantum two-photon entanglement, and
the latter from classical thermal spatial correlation which
exists only in high gain SPDC. We also formulate one-
photon and two-photon double-slit interference for stimu-
lated parametric down-conversion. The paper is organized
as follows: in Section 2 we briefly review double-slit inter-
ference for a coherent state and a two-photon state. In
Section 3 we cite several formulas as a review of the opti-
cal parametric down-conversion process. We analyze two-
photon double-slit interference in Sections 4 and 5 for the
spontaneous and stimulated processes, respectively. The
final Section 6 is the conclusion and discussion.

2 Double-slit interference for a coherent
state and a two-photon state

We consider the scheme of Young’s double-slit experiment
as shown in Figure 1. The double-slit function is defined by

T (x) =
{

1
0

(d− b)/2 ≤ |x| ≤ (d+ b)/2,
others,

(1)

where d is the distance between the centers of two slits and
b is the width of each slit. In Figure 1, both the double-
slit and the detection screen are placed at the two focal
planes of a lens. By ignoring the thickness of the double-
slit and taking into account T 2(x) = T (x), the outgoing
transverse envelope operator e′(x, t) of the double-slit is
written as

e′(x, t) = T (x)e(x, t) + [1 − T (x)]evac(x, t), (2)

where e(x, t) is the field injected into the double-slit and
the vacuum field operator evac(x, t) is introduced for the
sake of e′(x, t) satisfying the bosonic commutation rela-
tion. Since the vacuum field has no contribution to the
normal-order correlation, it can be neglected in the calcu-
lations below.

In the paraxial approximation, the field r(x, t) in the
detection plane P2 is expressed by a Fourier transform of
the lens

r(x, t) =

√
k

2πf

∫
e′(x′, t) exp

[
−i k
f
x′x

]
dx′. (3)
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Fig. 1. Schemes of Young’s double-slit interference with a con-
vex lens: (a) a one-photon (two-photon) detector measures one-
photon (two-photon) intensity distribution; two one-photon
detectors measure joint-intensity distribution at a pair of sym-
metric positions. (b) for a type II crystal, two-photon intensity
distribution is measured by two one-photon detectors through
a polarizing beam splitter (PBS).

By substituting equation (2) into equation (3), we obtain

r(x, t) =
1
2π

√
k

f

∫
T̃

(
kx

f
− q

)
ẽ(q,Ω) exp[−iΩt]dqdΩ,

(4)
where

T̃ (q) =
1√
2π

∫
T (x)e−iqxdx =

2b√
2π

sinc(qb/2) cos(qd/2)

(5)
is the Fourier transform of the double-slit function T (x),
and ẽ(q,Ω) is the Fourier transform of e(x, t) for both the
spatial and temporal variables.

To begin with, we consider the field e(x, t) to be a
stationary and monochromatic plane wave in a coherent
state

〈e(x, t)〉 = A, (6)

where A is a constant. When the field is normally incident
onto the double-slit, it has

〈ẽ(q,Ω)〉 = 2πAδ(q)δ(Ω). (7)

In the detection plane, the first-order correlation is calcu-
lated as

G(1)(x1, x2, t) ≡
〈
r†(x1, t)r(x2, t)

〉

=
kA2

f
T̃ ∗

(
kx1

f

)
T̃

(
kx2

f

)
. (8)
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Fig. 2. One-photon (solid line) and two-photon (dashed line)
double-slit interference patterns for a coherent beam.

Hence, the intensity distribution in the detection plane is
written as

G(1)(x, x, t) ≡ 〈
r†(x, t)r(x, t)

〉
=
kA2

f
T̃ 2

(
kx

f

)

= I0sinc2

(
πbx

λf

)
cos2

(
πdx

λf

)
, (9)

where I0 = 2kb2A2/(πf) and λ = 2π/k. Note that T̃ (x)
is a real function. Equation (9) represents an interference
fringe with the interval λf/d in the range λf/b, as shown
in Figure 2.

Similarly, the second-order correlation function can be
obtained as

G(2)(x1, x2, t) =
〈
r†(x1, t)r†(x2, t)r(x2, t)r(x1, t)

〉

=
k2A4

f2
T̃ 2

(
kx1

f

)
T̃ 2

(
kx2

f

)
. (10)

According to the theory of field coherence, the separa-
bility of spatial variables in correlation functions verifies
perfect coherence of the field. Since the field operators at
different positions are commutable, the second-order cor-
relation of the field at x1 �= x2 is in fact the spatial inten-
sity correlation and it can be observed by joint-intensity
measurement as shown in Figure 1a. The spatial patterns
related to G(1)(x, x, t) and G(2)(x1, x2, t) are called the
one-photon and two-photon interference, respectively. Ac-
cording to equation (10), in the joint-intensity measure-
ment, if we scan one detector while fix the other, the same
interference fringe as the one-photon interference can be
observed. We now introduce two kinds of observation for
the two-photon double-slit interference. One is the spa-
tial intensity-correlation measurement by scanning two
detectors synchronously at a pair of symmetric positions,
x1 = −x2 = x. The other one is the two-photon intensity
measurement by using a two-photon detector which gener-
ates a photo-electron by absorbing two photons. Applying

these two kinds of observation to equation (10), we obtain

G(2)(x, x, t) = G(2)(x,−x, t)

= I2
0 sinc4

(
πbx

λf

)
cos4

(
πdx

λf

)
. (11)

In Figure 2, we plot G(2)(x, x, t) (G(2)(x,−x, t)) in com-
parison with G(1)(x, t) for the coherent beam: the two in-
terference patterns are alike.

The above discussion on the coherent state is analo-
gous to a classical field. Then, we consider a two-photon
state as input, which is a quantum state without classical
analogy. A general two-photon state can be written as

|ψ〉 =
∫
dqsdqiC(qs, qi)a†s(qs)a

†
i (qi)|0〉, (12)

where a†s and a†i are respectively the creation operators for
s and i photons which are assumed to be distinguishable.
qs and qi are the transverse wavevectors. When the input
field is stationary, equation (4) can be simplified as

r(x) =

√
k

2πf

∫
T̃

(
kx

f
− q

)
ẽ(q)dq. (13)

By using equation (13), the first-order correlation func-
tions for s-photon and i-photon in the detection plane are
obtained as

G(1)
s (x1, x2) =

k

2πf

∫
dqdq1dq2C

∗(q1, q)C(q2, q)

× T̃ ∗
(
kx1

f
− q1

)
T̃

(
kx2

f
− q2

)
, (14a)

G
(1)
i (x1, x2) =

k

2πf

∫
dqdq1dq2C

∗(q, q1)C(q, q2)

× T̃ ∗
(
kx1

f
− q1

)
T̃

(
kx2

f
− q2

)
, (14b)

respectively.
The second-order correlation function for the two

modes is defined by

G(2)(x1, x2, t) =
〈
r†i (x1, t)r†s(x2, t)rs(x2, t)ri(x1, t)

〉
,

(15)
which describes a coincidence probability of s-photon
at position x2 and i-photon at position x1. However,
G(2)(x, x, t) describes a two-photon intensity distribution.
For the two-photon state (12), we calculate the two-
photon wavepacket in the detection plane

〈0|rs(x2)ri(x1)|ψ〉 =
k

2πf

∫
dqsdqiC(qs, qi)

× T̃

(
kx2

f
− qs

)
T̃

(
kx1

f
− qi

)
. (16)

Hence the second-order correlation can be expressed as

G(2)(x1, x2) = |〈0|rs(x2)ri(x1)|ψ〉|2. (17)
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We discuss two extreme cases: two photons are indepen-
dent and two photons are perfectly entangled in the trans-
verse wavevector. In the non-entangled case, C(qs, qi) =
Cs(qs)Ci(qi), the first- and second-order correlation
functions are written as

G(1)
m (x1, x2) =

k

2πf

∫
C∗

m(q)T̃ ∗
(
kx1

f
− q

)
dq

×
∫
Cm(q)T̃

(
kx2

f
− q

)
dq, (m = s, i),

(18a)

G(2)(x1, x2) =
∣∣∣∣ k

2πf

∫
Cs(q)T̃

(
kx2

f
− q

)
dq

×
∫
Ci(q)T̃

(
kx1

f
− q

)
dq

∣∣∣∣
2

= G
(1)
i (x1, x1)G(1)

s (x2, x2). (18b)

Equations (18) exhibit the same separability as a coherent
state (see Eqs. (8) and (10)), identifying perfect first- and
second-order coherence. However, equation (18b) shows
the independence of two photons in the second-order cor-
relation, that is, the two-photon interference consists of
two individual one-photon interference. This seems to
obey the Dirac’s statement: “Each photon interferes only
with itself. Interference between two different photons
never occurs”.

In the opposite extreme, we assume perfect wave-
vector-entanglement in a two-photon state (12), i.e.
C(qs, qi) → δ(qs + qi). The first- and second-order cor-
relation functions are written as

G(1)
s (x1, x2) = G

(1)
i (x1, x2)

=
k

2πf

∫
dqT̃ ∗

(
kx1

f
+ q

)
T̃

(
kx2

f
+ q

)

=
k

f
√

2π
T̃

[
k

f
(x2 − x1)

]
, (19a)

G(2)(x1, x2) =
∣∣∣∣ k

2πf

∫
dqT̃

(
kx2

f
+ q

)
T̃

(
kx1

f
− q

)∣∣∣∣
2

=
k2

2πf2
T̃ 2

[
k

f
(x1 + x2)

]
, (19b)

respectively, where we use the integrals

∫
dqT̃ ∗

(
kx1

f
± q

)
T̃

(
kx2

f
± q

)
=

1
2π

∫
dqdx′1dx

′
2T (x′1)T (x′2)e

i( kx1
f ±q)x′

1−i( kx2
f ±q)x′

2

=
∫
dx′1dx

′
2T (x′1)T (x′2)δ(x

′
1 − x′2)e

i
kx1

f x′
1−i

kx2
f x′

2

=
∫
dx′1T (x′1)T (x′1)e

i k
f (x1−x2)x

′
1

=
√

2πT̃
[
k

f
(x2 − x1)

]
(20)

and

∫
dqT̃

(
kx1

f
± q

)
T̃

(
kx2

f
∓ q

)
=

√
2πT̃

[
k

f
(x2 + x1)

]
,

(21)
and take into account T 2(x) = T (x). Equations (19) show
position-correlation and decoherence of the field. In mea-
surement, setting x1 = x2 in equation (19), we obtain

G(1)
s (x, x) = G

(1)
i (x, x) =

k

f
√

2π
T̃ (0), (22a)

G(2)(x, x) =
k2

2πf2
T̃ 2

[
k

f
(2x)

]
. (22b)

Therefore, the one-photon double-slit interference disap-
pears completely and the two-photon double-slit interfer-
ence shows a sub-wavelength property due to the term

T̃ 2

(
k

f
2x

)
∝ sinc2

[
πbx

(λ/2)f

]
cos2

[
πdx

(λ/2)f

]
. (23)

The fringe is the same as the ordinary double-slit interfer-
ence of a coherent beam with half the wavelength. As has
been explained, the entangled photon pair should be seen
as a biphoton, and the sub-wavelength interference occurs
between biphotons. On the other hand, each single photon
in biphoton is in a mixed state, causing decoherence. For a
general two-photon entangled state, the relation between
the first- and second-order correlation functions shows the
complementarity of coherence and entanglement [8,10,11].
Finally, we indicate that equations (19) are also valid for
the case when s and i photons are indistinguishable.

In Sections 4 and 5, we will see again these basic rela-
tions of first- and second-order correlation functions in a
general parametric process.

3 The basic formula in optical parametric
down-conversion

In the optical parametric down-conversion process, in
which a plane-wave pump field of frequency ωp activates
a χ(2) nonlinear crystal, the basic unitary transformation
is described by [15,24–26]

ẽm(q,Ω) = Um(q,Ω)ãm(q,Ω) + Vm(q,Ω)ã†n(−q,−Ω)
(m �= n = s, i), (24)

where ẽm(q,Ω) and ãm(q,Ω) are the output and input field
operators, respectively. q is the transverse wavevector and
Ω is the frequency deviation from the carrier frequency. In
the collinear case, the transfer coefficients Um(q,Ω) and
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Vm(q,Ω) are given by [26]

Us(q,Ω) = Θs(q,Ω)
[

coshΓ(q,Ω)

+ i
∆(q,Ω)
2Γ(q,Ω)

sinh Γ(q,Ω)
]
, (25)

Vs(q,Ω) = Θs(q,Ω)
g

Γ(q,Ω)
sinh Γ(q,Ω), (26)

Ui(q,Ω) = Θi(q,Ω)
[

coshΓ(−q,−Ω)

+ i
∆(−q,−Ω)
2Γ(−q,−Ω)

sinh Γ(−q,−Ω)
]
, (27)

Vi(q,Ω) = Θi(q,Ω)
g

Γ(−q,−Ω)
sinh Γ(−q,−Ω), (28)

where

Θm(q,Ω) = ei[kmz(q,Ω)−knz(−q,−Ω)−2km+kp]lc/2

(m �= n = s, i), (29)

Γ(q,Ω) =
√
g2 −∆2(q,Ω)/4, (30)

∆(q,Ω) = [ksz(q,Ω) + kiz(−q,−Ω) − kp]lc, (31)
∆0 = (ks + ki − kp)lc. (32)

g is the coupling strength and lc is the length of crys-
tal. ∆0 is the collinear phase mismatching of the cen-
tral frequency components which correspond to the wave-
numbers kj (j = s, i, p). For simplicity, we assume that two
down-converted beams have the degenerate carrier fre-
quency ωp/2. Hence, equation (31) can be reduced to [26]

∆(q,Ω) ≈ ∆0 + Ω2/Ω2
0 + Ω/Ω′

0 − q2/q20 − q/q′0, (33)

where Ω0 and q0 are defined as the frequency and spatial-
frequency bandwidths, respectively. Ω′

0 and q′0 represent
the temporal and spatial walk-off, respectively. The trans-
fer coefficients U and V satisfy the following unitarity con-
ditions [26]

|Um(q,Ω)|2 − |Vm(q,Ω)|2 = 1 (m = s, i), (34a)
Um(q,Ω)Vn(−q,−Ω) = Un(−q,−Ω)Vm(q,Ω)

(m �= n = s, i). (34b)

Equations (24–33) describe the SPDC process of type II
crystals but also can be applicable to type I crystals.
For the former, two converted beams are orthogonally
polarized, whereas for the latter, they are degenerate in
both polarization and central frequency. However, in equa-
tion (33), Ω′

0 → ∞ and q′0 → ∞ are set for type I
crystals. Therefore, equation (24) can describe type I crys-
tals by omitting the subscripts. As a matter of fact, un-
der the assumption of the carrier frequency degeneracy,
equations (25) and (26) are the same as equations (27)
and (28), respectively.

Using equation (24), we calculate the first- and second-
order correlation functions for the down-converted beams

〈
ẽ†m(q,Ω)ẽm(q′,Ω′)

〉
= |Vm(q,Ω)|2 δ(q − q′)δ(Ω − Ω′)

(m = s, i) (35a)

〈
ẽ†i (q1,Ω1)ẽ†s(q2,Ω2)ẽs(q′2,Ω

′
2)ẽi(q′1,Ω

′
1)

〉
=

V ∗
i (q1,Ω1)V ∗

s (q2,Ω2)Vs(q′2,Ω
′
2)Vi(q′1,Ω

′
1)

× [δ(q1 − q′1)δ(Ω1 − Ω′
1)δ(q2 − q′2)δ(Ω2 − Ω′

2)

+ δis × δ(q1 − q′2)δ(Ω1 − Ω′
2)δ(q2 − q′1)δ(Ω2 − Ω′

1)]

+ V ∗
i (q1,Ω1)U∗

s (q2,Ω2)Vs(q′2,Ω
′
2)Ui(q′1,Ω

′
1)

× δ(q1 + q2)δ(Ω1 + Ω2)δ(q′1 + q′2)δ(Ω
′
1 + Ω′

2), (35b)

where δis is 0 for type II and 1 for type I crystals, for
which the subscripts in equation (35) should be omitted.

4 Double-slit interference in spontaneous
parametric down-conversion

In this section, we consider double-slit interference in the
SPDC case in which the input field is in the vacuum state.
In Figure 1, the two down-converted beams generated
from a crystal illuminate a double-slit and then are de-
tected in the focal plane of the lens. We designate am(x, t),
em(x, t), e′m(x, t), and rm(x, t) as the slowly varying field
operators for the input surface Pin, the output surface Pout

of the crystal, the output plane of the double-slit P1, and
the detection plane P2, respectively. Using equations (4)
and (35), we may calculate the first- and second-order cor-
relation functions for the field in the detection plane P2.

The first-order correlation functions for the two beams
are obtained to be

G(1)
m (x1, x2) = Mm(x1, x2) ≡ 〈0|r†m(x1, t)rm(x2, t)|0〉

(m = s, i)

=
k/f

(2π)2

∫
dqdΩ |Vm(q,Ω)|2

×T̃ ∗
(
kx1

f
− q

)
T̃

(
kx2

f
− q

)
. (36)

G
(1)
m (x, x) describes the one-photon interference pattern

for beam m in the detection plane.
Then we consider the second-order correlation func-

tion defined by equation (15), which now describes the
spatial intensity correlation between the signal beam at
position x2 and the idler beam at position x1. In the case
of x1 = x2 = x, it describes a two-photon intensity dis-
tribution. For a type II crystal, intensity correlation of
two orthogonally polarized beams can be measured ex-
perimentally by using a polarizing beam splitter (PBS)
as shown in Figure 1b. For a type I crystal, however, the
subscripts s and i should be omitted in equation (15).
If a two-photon detector is available, one may observe the
two-photon intensity distribution at position x1 = x2 = x.
Otherwise, the realistic detection scheme for a type I crys-
tal is shown in Figure 1a in which the intensity correlation
is measured by two one-photon detectors at different po-
sitions x1 and x2.

For the vacuum state set in equation (15), by us-
ing equations (4) and (35b), we obtain the second-order



142 The European Physical Journal D

correlation

G(2)(x1, x2) = Mi(x1, x1)Ms(x2, x2) + |Nis(x1, x2)|2

+ δis |M(x1, x2)|2 . (37)

Mm(x1, x2) is given by equation (36), and

Nmn(x1, x2) =
k/f

(2π)2

∫
Vm(q,Ω)Un(−q,−Ω)

× T̃

(
kx1

f
− q

)
T̃

(
kx2

f
+ q

)
dqdΩ (m �= n = s, i).

(38)

For a type II crystal, equation (37) consists of two terms.
The first term, which is separable in terms of both polar-
ization and position, describes the contribution of two in-
dividual single-photon processes, whereas the second term
describes two-photon interference effect related to photon
entanglement. However, for a type I crystal, the third term
introduces position correlation similar to the second term.
As a matter of fact, the combination of the first and third
terms in equation (37) identifies classical thermal correla-
tion [21] (see also [23]).

In reference [24], intensity distribution and intensity
correlation are defined by taking into account the detec-
tion system which has a finite detection area Sd and a
finite response time Td. For perfect detection that the de-
tection area Sd is small enough for pattern resolution and
the response time Td is much shorter than 1/Ω0, the inten-
sity distribution and the intensity correlation to be mea-
sured are proportional to the first- and the second-order
correlation functions, respectively. For simplicity, we re-
strict our discussion to perfect detection.

We now consider the spatial symmetry of the
first- and second-order correlation functions. Because of
|Vs(q,Ω)|2 = |Vi(−q,−Ω)|2 and T̃ (q) = T̃ (−q), we obtain

Ms(x1, x2) = Mi(−x1,−x2) (39)

for a type II crystal, and

M(x1, x2) = M(−x1,−x2) = M(x2, x1) (40)

for a type I crystal, where the last equality in equation (40)
is due to the real function T̃ ∗(q) = T̃ (q). Using equa-
tion (34b) and T̃ (q) = T̃ (−q) in equation (38), we obtain

Nmn(x1, x2) = Nnm(x2, x1) = Nnm(−x1,−x2). (41)

From equation (37), we arrive

G(2)(−x2,−x1) = Mi(−x2,−x2)Ms(−x1,−x1)

+ |Nis(−x2,−x1)|2+δis |M(−x2,−x1)|2

= Ms(x2, x2)Mi(x1, x1) + |Nsi(x2, x1)|2

+ δis |M(x2, x1)|2
= G(2)(x1, x2), (42)

where equations (39–41) are applied. In particular, this
gives G(2)(x, x) = G(2)(−x,−x). Therefore, for both
type I and type II crystals, the two-photon interference
pattern is symmetrical with respect to the symmetrical
center of the double-slit.

In order to obtain analytical result for integrals (36)
and (38), we discuss two bandwidth limits of the SPDC
process: the broad and narrow bandwidths. In the broad-
band limit, (q0 and q′0) � 2π/b, Um(q,Ω) and Vm(q,Ω)
are much flatter in comparison with T̃ (q) and we can set
Um(q,Ω) ≈ Um(0,Ω) and Vm(q,Ω) ≈ Vm(0,Ω) in the in-
tegrals. By taking into account equations (20) and (21),
equations (36) and (38) can be rewritten as

Mm(x1, x2) =
ηm√
2π

∫
dqT̃ ∗

(
kx1

f
− q

)
T̃

(
kx2

f
− q

)

= ηmT̃

[
k

f
(x2 − x1)

]
(m = s, i), (43)

and

Nmn(x1, x2) = ξmnT̃

[
k

f
(x1 + x2)

]
(m �= n = s, i),

(44)
respectively, where we define

ηm = (k/f)/(2π)3/2

∫
|Vm(0,Ω)|2 dΩ

and

ξmn = (k/f)/(2π)3/2

∫
Vm(0,Ω)Un(0,−Ω)dΩ.

In the broadband limit where the maximum entangle-
ment in transverse wavevector occurs for two converted
beams, we see again the position-correlation in the corre-
lation functions. The first-order correlation equation (43)
shows the same position-correlation as equation (19a)
for the two-photon state with the maximum wavevector-
entanglement. This makes one-photon intensity distribu-
tion in the detection plane P2 homogeneous, Mm(x, x) =
ηmT̃ (0), i.e. the one-photon double-slit interference
disappears completely.

In this limit, however, the second-order correla-
tion (37) is obtained to be

G(2)(x1, x2) = ηiηs

{
T̃ 2(0) + δisT̃

2

[
k

f
(x2 − x1)

]}

+ |ξis|2 T̃ 2

[
k

f
(x1 + x2)

]
. (45)

The first term in {} comes from two individual single-
photon double-slit processes which are now homogeneous.
The second term in {} and the last term manifest explic-
itly position-correlation. To show two kinds of observation,
x1 = x2 = x and x1 = −x2 = x, the above equation is
written as

G(2)(x, x) = ηiηs(1 + δis)T̃ 2(0) + |ξis|2 T̃ 2

(
k

f
2x

)
, (46)
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and

G(2)(x,−x) = (ηiηs + |ξis|2)T̃ 2(0) + δisηiηsT̃
2

(
k

f
2x

)
,

(47)
respectively. The former stands for the two-photon in-
tensity distribution and the latter, the joint-intensity
correlation at symmetric positions. Both equations (46)
and (47) include a term T̃ 2[(k/f)2x] which characterizes
a sub-wavelength interference pattern by the factor of λ/2
in comparison with the ordinary interference shown by
equation (9). Obviously, due to equation (46), the sub-
wavelength interference for the two-photon intensity dis-
tribution can occur in both type I and type II crystals.
However, equation (47) shows a sub-wavelength interfer-
ence through joint-intensity measurement only for a type I
crystal. As we indicated above, thermal correlation in-
cluded in type I SPDC is responsible for this effect [21].

According to equations (46) and (47), the visibilities of
fringes designated by G(2)(x, x) and G(2)(x,−x) are cal-
culated to be

V1 =
1

1 + 2(1 + δis)θ
, (48)

and
V2 =

1
3 + 2/θ

, (49)

respectively, where Vi = (G(2)
max − G

(2)
min)/(G(2)

max + G
(2)
min)

(i = 1, 2) and θ ≡ ηiηs/ |ξis|2. As the parameter θ is in-
creased from a small quantity, V1 decreases monotonously
from unity and V2 increases from zero up to 1/3. Since
the parameter θ is related to the coupling strength g of
SPDC, we plot the visibilities as functions of g in Fig-
ure 3, in which V1s for type II and type I crystals are
indicated by the solid and dashed lines, respectively, and
V2 for type I crystals is indicated by the dotted line. In
Figure 3, the visibilities V1 of sub-wavelength interference
fringe for both type I and II crystals reach perfectness in
a weak coupling of SPDC, which generates approximately
a two-photon entangled state. This effect has been ob-
served experimentally [5,9,13,20]. The important fact is
that, the sub-wavelength interference with a substantial
visibility can exist even in very high gain SPDC, in which
the beams contain a large amount of photons. This re-
sult is consistent with second-order temporal correlation
in the plane-wave limit [19], and with ghost imaging and
interference in the macroscopic realm [15].

V2 describes the visibility of sub-wavelength interfer-
ence observed by a joint-intensity measurement. It exists
only for type I crystals where θ ≡ η2/ |ξ|2. This visibil-
ity is trivial in low gain and increases with the gain of
SPDC interaction. Therefore the nature of this kind of
sub-wavelength interference is macroscopic without micro-
scopic counterpart, reflecting the classical thermal corre-
lation. In type I crystals, the two kinds of sub-wavelength
interference compete for visibility, but can coexist in very
high gain and reach the visibility about 20%.

For an ideal thermal light source, the visibility of sub-
wavelength interference pattern is 1/3 which is irrelevant
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Fig. 3. Visibilities V1 and V2 versus the gain of SPDC for dif-
ferent collinear phase-mismatching (a) ∆0 = −5.85; (b) ∆0 =
0; and (c) ∆0 = 5.85. Solid and dashed lines designate V1 for
type II and type I crystals, respectively; dotted line designates
V2 for a type I crystal.

to the source intensity [23]. In the SPDC model, however,
visibility V2 depends on the SPDC gain and, in particular,
it tends to zero in the low gain limit. This is because that
the second-order correlation function of SPDC consists of
both the thermal correlation and the quantum entangle-
ment. In the intensity correlation measurement with two
detectors placed at symmetric positions x1 = −x2 = x,
the quantum entanglement part shown by the second term
in equation (45) contributes an additional background to
the interference pattern. In the low gain limit, the quan-
tum entanglement dominates the second-order correlation
function of SPDC, and in fact the down-converted fields
are approximately in a two-photon entangled state. There-
fore, the sub-wavelength interference related to the ther-
mal correlation disappears.

In the opposite limit, we assume that the SPDC has
a very narrow bandwidth q0  2π/b. Extremely when
q0 → 0, the transfer coefficient Vm(q,Ω) (m = s, i) tends
to the delta function

Vm(q,Ω) → Vm(0,Ω)δ(q). (50)

Equations (36) and (38) are respectively written as

Mm(x1, x2) =
1√
2π
ηmT̃

(
kx1

f

)
T̃ �

(
kx2

f

)
, (51)
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Fig. 4. Two-photon interference
patterns versus the normalized
bandwidth of SPDC q0b/(2π):
(a) G(2)(X, X) for a type I crystal;
(b) G(2)(X,−X) for a type I
crystal; (c) G(2)(X, X) for a type II
crystal; and (d) G(2)(X,−X)
for a type II crystal, where
X = xkb/(2πf) is the normalized
transverse position in the detec-
tion plane. The gains are set as
g = (1/2) log 1.5 in (a) and (c), and
g = (1/2) log 10 in (b) and (d). The
walk-off bandwidths Ω′

0 = Ω0/10,
q′0 = q0/10 are set in (c) and (d) for
a type II crystal. In Figures 4–8,
the phase matching ∆0 = 0 and
the double-slit parameter b/d = 0.2
are taken.

and

Nmn(x1, x2) =
1√
2π
ξmnT̃

(
kx1

f

)
T̃

(
kx2

f

)
. (52)

In this limit, the position-correlation disappears com-
pletely. The second-order correlation is then

G(2)(x1, x2) =
1
2π

[
(1 + δis)ηiηs + |ξis|2

]

× T̃ 2

(
kx1

f

)
T̃ 2

(
kx2

f

)
. (53)

Therefore, the one-photon intensity distribution Mm(x, x)
and the second-order correlation function G(2)(x1, x2) in
the plane P2 are the same as the case for the coherent
state. This can be understood by the fact that the two
down-converted beams have no more correlation in trans-
verse wavevector.

We plot the two-photon interference patterns by vary-
ing the bandwidth q0 of SPDC process in Figure 4, in
which Figures 4a and 4b (4c and 4d) are for a type I
(type II) crystal. In Figures 4a and 4c, a low gain SPDC,
g = (1/2) log 1.5 (with the amplification rate 1.5) is taken
in two-photon intensity measurement so that the sub-
wavelength interference with a better visibility is achieved
when the normalized bandwidth q0b/(2π) is increased.
The fringe patterns for two types of crystals are very alike
but the fringe intensity for a type II crystal is much lower.
The feature of type II phase matching does not affect spa-
tial correlation but simply lowers the number of gener-
ated photon pairs [26]. Figures 4b and 4d show the in-
terference patterns for joint-intensity measurement of two
one-photon detectors placed at symmetric positions. The
sub-wavelength interference can be observed only for a
type I crystal when the gain of SPDC is higher, for in-
stance, g = (1/2) log 10 (with the amplification rate 10)

is taken in the figures. Though the visibilities are lower,
the intensities of the patterns are getting much higher.
This is also true for the case of two-photon intensity mea-
surement. The three plots of Figures 4a–4c show that the
bandwidth of SPDC governs sub-wavelength interference.
When the bandwidth of SPDC is very small, the two con-
verted beams are de-correlated in transverse wavevector
and hence the sub-wavelength interference disappears.

5 Double-slit interference in stimulated
parametric down-conversion

In the stimulated optical parametric process, a signal
beam is injected into a nonlinear crystal and then ampli-
fied. The nonlinear crystal becomes an optical paramet-
ric amplifier (OPA). We assume a stationary plane-wave
beam in a coherent state as input

〈ãs(q,Ω)〉 = 2πAδ(q −Q)δ(Ω), (54)

where Q designates the transverse wavevector of the input
beam deviated from the normal incidence. For a type II
crystal, we name the input beam as the signal which can
be identified by polarization, while the idler beam is in
the vacuum state. For a type I crystal, the subscript s
in (54) is omitted. Considering the input beam described
by equation (54), we calculate the first-order correlation
in the plane P2

G(1)
m (x1, x2) = W ∗

m(x1, Q)Wm(x2, Q) +Mm(x1, x2)
(m = s, i), (55)

where

Ws(x,Q) = A
√
k/fUs(Q, 0)T̃ (kx/f −Q) (56a)

Wi(x,Q) = A
√
k/fVi(−Q, 0)T̃ (kx/f +Q) (56b)
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for a type II crystal, and

W (x,Q) = A
√
k/f [U(Q, 0)T̃ (kx/f −Q)

+ V (−Q, 0)T̃ (kx/f +Q)] (57)

for a type I crystal. Mm(x1, x2) has been defined by equa-
tion (36). In equation (55), the first and second terms show
contributions coming from the stimulated and the spon-
taneous processes, respectively. Obviously, the stimulated
part shows the first-order coherence because of the sepa-
rability of spatial variables. Nevertheless, when the input
beam is strong enough, the spontaneous process can be
neglected. G(1)

m (x, x) � |Wm(x,Q)|2 describes an ampli-
fied double-slit interference pattern in comparison with
the case when the crystal is taken away.

For a type I crystal, however, the one-photon inter-
ference pattern contributed by the stimulated process is
written as

|W (x,Q)|2 =

kA2

f

{
|U(Q, 0)|2T̃ 2

(
kx

f
−Q

)
+ |V (−Q, 0)|2T̃ 2

(
kx

f
+Q

)

+
[
U(Q, 0)V ∗(−Q, 0)T̃

(
kx

f
−Q

)
T̃

(
kx

f
+Q

)
+c.c.

]}
.

(58)

The first and second terms correspond to the two inter-
ference patterns generated by the two stimulated beams,
i.e. the signal beam with the transverse wavevector Q and
the idler beam with −Q. The third term represents an
additional coherent superposition of the two stimulated
fields. As a result, the interference pattern can be different
from the ordinary one due to this additional “interference
term”. We plot the stimulated one-photon interference
patterns for a type I crystal in Figure 5. For the normal in-
cidence case Q = 0, the interference pattern shown in Fig-
ure 5a is the same as the ordinary one indicated by equa-
tion (9) with the exception of a spontaneous background.
When the transverse wavevector Q of the input beam is
increased, the interference fringe fades at Qb/(2π) = 0.12
in Figure 5b, and is then revived at Qb/(2π) = 0.4 in
Figure 5c. As the input beam is well tilted in incidence,
Qb/(2π) = 0.9 in Figure 5d for instance, the signal and
idler patterns are separated in space.

For a type II crystal, the input signal beam creates two
interference patterns: one for the outgoing signal beam
with the amplification ratio |Us(Q, 0)|2 and the other
for the outgoing idler beam with the amplification ratio
|Vi(−Q, 0)|2 [27]. According to equations (56), these two
patterns are the same as the ordinary one (see Eq. (9))
and can be identified by polarization. Figure 6 shows the
stimulated one-photon interference patterns for a type II
crystal. We can see that when the transverse wavevector
Q of the input beam is increased, the signal and idler in-
terference patterns are separated in space. However, the
background of the patterns formed by the spontaneous ra-
diation is spatially unbalanced because of the odd walk-off
term q/q′0 in type II phase matching.
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Fig. 5. Stimulated one-photon interference patterns for a
type I crystal. The normalized transverse wavevector of the in-
put field are set as Qb/2π = 0, 0.12, 0.4 and 0.9 for (a), (b), (c)
and (d), respectively. The parameters are taken as q0b/2π = 2,
kbΩ0/4π2f = 1, (2kb2/πf)A2 = 1 and g = (1/2) log 10.

We go through a long derivation, using the unitary
transformation (24) and the bosonic commutation rela-
tion, and obtain the second-order correlation function in
the detective plane P2

G(2)(x1, x2) =

[|Wi(x1, Q)|2 +Mi(x1, x1)][|Ws(x2, Q)|2 +Ms(x2, x2)]

+ [Wi(x1, Q)Ws(x2, Q)N∗
is(x1, x2) + c.c.] + |Nis(x1, x2)|2

+ δis[W ∗(x1, Q)W (x2, Q)M(x1, x2) + c.c.]

+ δis |M(x1, x2)|2 . (59)

Again, equation (59) can describe two types of crystals.
For a type I crystal, the subscripts i and s are omitted
and δis = 1, whereas for a type II crystal δis = 0. Similar
to equation (37), the first term is the product of the two
one-photon interference patterns for the outgoing beams.
The third and fifth terms refer to the spontaneous process.
However, the second and the fourth terms exhibit the in-
terference terms between the stimulated and spontaneous
processes. The result is similar to the discussion of image
amplification in OPA where W (x) describes an amplified
image [28]. The terms related to the stimulated process
do not contain the position-correlation, and will not bring
about sub-wavelength interference.
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Fig. 6. Stimulated one-photon interference patterns of the sig-
nal (solid line) and idler beams (dashed line) for a type II crys-
tal. The normalized transverse wavevector of the input field are
set as Qb/(2π) = 0, 0.12, 0.4 and 0.9 for (a), (b), (c) and (d)
respectively. We take q′0 = q0/10, Ω′

0 = Ω0/10, and the other
parameters the same as in Figure 5.

In Figure 7, we plot the stimulated two-photon inter-
ference patterns for a type I crystal by setting several val-
ues of input direction. Figures 7a–7d and 7e–7h show the
two-photon intensity measurement and the joint-intensity
measurement, respectively. For the normal incidence case
Q = 0, two kinds of observation exhibit the same pattern.
Similar to the one-photon interference in a type I crystal,
for the two kinds of observation, the interference patterns
contributed by the stimulated fields alternately fade out
and in when the transverse wavevector Q of the input
beam is increased. For a large Q, the two stimulated pat-
terns are well apart while the sub-wavelength interference
patterns contributed by the spontaneous process appear
in the center.

For a type II crystal, the two-photon measurement can
be performed by the scheme shown in Figure 1b. Fig-
ures 8a–8d and 8e–8h show the joint-intensity measure-
ment for x1 = x2 and x1 = −x2, respectively. When
the transverse wavevector Q is increased, the interference
pattern for x1 = x2 expands until it is divided into two
stimulated patterns and leaves the spontaneous one in the
center. As for the joint-intensity measurement x1 = −x2,
however, the pattern moves away from the center with in-
creasing the input transverse wavevector. These features
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Fig. 7. Stimulated two-photon interference patterns for a
type I crystal where (a–d) are for the two-photon intensity
distribution X1 = X2 and (e–h) for the joint-intensity mea-
surement at symmetric positions X1 = −X2. We set the nor-
malized transverse wavevector of the input field Qb/(2π) = 0,
0.12, 0.4 and 0.9 for (a, e), (b, f), (c, g) and (d, h), respectively.
The parameters are the same as in Figure 5.

differ from that of type I crystals due to the polarization
distinguishability between the signal and idler photons.
For the first observation, the fade pattern does not exist
since there is no additional “interference term” between
the two stimulated beams. However, in the second obser-
vation, only one pattern appears even for a large Q simply
because of the polarization-sensitive joint-intensity mea-
surement which is performed through the PBS.

6 Conclusions

In summary, we formulate the first- and second-order cor-
relation functions in the Young’s double-slit interference
for both spontaneous and stimulated parametric down-
conversions. We show that the sub-wavelength two-photon
interference can occur macroscopically in a general spon-
taneous parametric process. Even if for a very high gain
of SPDC, in which the converted beams contain a huge
number of photons, the sub-wavelength interference pat-
tern is intensive with a solid visibility. This makes the sub-
wavelength lithography technology practicable. Moreover,
for a type I crystal, the sub-wavelength interference can
exist by performing a joint-intensity measurement with
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Fig. 8. Stimulated two-photon interference patterns for a
type II crystal where (a–d) are for the two-photon intensity
distribution X1 = X2 and (e–h) for the joint-intensity mea-
surement at symmetric positions X1 = −X2. The parameters
are the same as in Figure 6.

two one-photon detectors placed at symmetric positions.
Since this effect occurs only in a higher gain of SPDC,
it reflects the macroscopic nature. Our theoretical analy-
sis shows that the sub-wavelength interference originates
from classical thermal correlation, playing a similar role
as quantum entanglement as already shown in [21] (see
also [23]). In the early time of quantum optics, the second-
order temporal and spatial correlation of thermal light was
shown in the famous Hanbury-Brown and Twiss experi-
ment [29]. From photonic viewpoint, two thermal photons
travel together more likely than they are apart. An intu-
itive understanding could be: bunched photons in thermal
light play likely a similar role as biphoton. However, the
more convinced explanation should refer to the similar-
ity of the second-order correlation between the entangled
photons and the thermal light [21] (see also [23]).

In the stimulated process, one-photon and two-photon
interference patterns generated by the outgoing stimu-
lated beams can be amplified. For a type I crystal, the
two stimulated beams are indistinguishable in the collinear
case and result in a secondary interference which may fade
the fringe.
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